
IJSRSET152276 | Received: 20 March 2015 | Accepted: 25 March 2015 | March-April 2015 [(1)2: 200-204]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

200

Database Traversal to Support Search Enhance Technique using SQL
Sivakumar K, Sriram U, Yasar Arafath S, Bhanu Priya

Computer Science and Engineering, Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

A search-as-you-type system computes answers on-the-fly as a user sorts during a keyword question character by

character. We have a tendency to support search-as-you-type on information residing during relative software. We

have a tendency to target the way to support this kind of search mistreatment the native information language, SQL.

A main challenge is the way to leverage existing information functionalities to satisfy the high performance demand

to realize associate interactive speed. We have a tendency to use auxiliary indexes hold on as tables to extend search

performance. We have a tendency to gift solutions for each single keyword queries and multi keyword queries, and

develop novel techniques for fuzzy search mistreatment SQL by permitting mismatches between question keywords

and answers. We gift techniques to answer first-N queries and discuss the way to support updates expeditiously.

Experiments on massive, real information sets show that our techniques modify software systems on a trade goods

pc to support search-as-you-type on tables with a lot of records.

Keywords: Search-as-you-type, databases, SQL, fuzzy search.

I. INTRODUCTION

Many info systems today improve user search

experiences by providing instant feedback as users

formulate search queries. Most search engines and

online search forms support auto completion that shows

recommended queries or perhaps answers “on the fly” as

a user sorts during a keyword question character by

character. As an example, think about the net search

interface at Netflix, 1 that permits a user to go looking

for motion-picture show info. If a user sorts during a

partial question “mad,” the system shows movies with a

title matching this keyword as a prefix, like

“Madagascar” and “Mad Men: Season one.” The instant

feedback helps the user not solely in formulating the

question, however additionally in understanding the

underlying knowledge. This sort of search is usually

known as search-as-you-type or type ahead search. Since

several search systems store their info during a backend

relative software system, a matter arises naturally: a way

to support search-as-you type on the info residing during

a DBMS? Some databases like Oracle and SQL server

already support prefix search, and that we might use this

feature to try to search-as-you-type. However, not all

databases give this feature. For this reason, we have a

tendency to study new strategies which will be

employed in all databases. One approach is to develop a

separate application layer on the information to

construct indexes, and implement algorithms for

respondent queries. Whereas this approach has the

advantage of achieving a high performance, its main

disadvantage is duplicating knowledge and indexes,

leading to further hardware prices. Another approach is

to use information extenders, like DB2 Extenders,

Informix Data Blades, Microsoft SQL Server Common

Language Runtime (CLR) integration, and Oracle

Cartridges, which permit developers to implement new

functionalities to a DBMS. This approach isn't possible

for databases that don't give such associate extender

interface, like MySQL. Since it must utilize proprietary

interfaces provided by information vendors, an answer

for one information might not be moveable to others.

Additionally, associate extender-based resolution,

particularly those enforced in C/C++, might cause

serious reliableness and security issues to information

engines. During this paper we have a tendency to study a

way to support search-as-you-type on software system

systems exploitation the native command language

(SQL). In alternative words, we would like to use SQL

to seek out answers to an exploration question as a user

sorts in keywords character by character. Our goal is to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

201

utilize the integral question engine of the information

system the maximum amount as attainable. During this

manner, we are able to scale back the programming

efforts to support search-as-you-type. Additionally, the

answer developed on one information exploitation

normal SQL techniques is moveable to alternative

databases that support a similar normal. Similar

observation are created by Gravano et al. [17] and Jestes

et al. [23] that use SQL to support similarity take part

databases.

Existing System

Most search engines and on-line search forms support

automobile completion. That shows instructed queries or

perhaps answers “on the fly” as user sorts in an

exceedingly question char by char. Some information

bases like Oracle and SQL server already support prefix

search, we may use this feature to try and do search as

you sort. But not all the databases support this feature,

for this reason we have a tendency to study a way which

will be utilized in all databases. In AN existing system,

systems don't seem to be specially designed for keyword

queries creating is more difficult to support search as

you sort are disadvantage. Some vital practicality to

support search as you sort needs be part of operations

that might be rather valuable to execute by the question

engine.

Disadvantages of Existing System

 Very Time Consuming Process.

 More challenging to support search

Proposed System

We develop numerous techniques to handle these

challenges. We have a tendency to propose 2 varieties of

ways to support Search-As-You sort for Single Keyword

Queries. We have a tendency to use SQL to scan a table

And verify every record by vocation a User outlined

operate (UDF) or victimization sort predicate. we have a

tendency to discuss gram primarily based} ways and a

UDF based methodology, because the 2 ways have an

occasional performance we have a tendency to propose a

brand new neighbourhood generation primarily based

methodology. We have a tendency to use comma (,) as

symbol to go looking over a quest that consumes less

time and helps to retrieve search knowledge additional

simply. We have a tendency to extend the technique to

support multi keyword queries; we develop a word level

progressive methodology to expeditiously answer multi-

keyword. Since the results of earlier queries square

measure hold on within the info and shared by future

queries

Advantages of Proposed System

• Less Time Consuming Process, because of the

multi-search concept.

• We may able to mine large amount of data

simultaneously.

Figure 1: System Architecture

II. METHODS AND MATERIAL

SYSTEM MODULES:

1. Exact Search for Single Keyword

2. Fuzzy Search for Single Keyword.

3. Supporting Multi-keyword Queries.

4. Supporting First-N Query.

5. Supporting amalgamate search.

1. Exact Search for Single Keyword.

No-index-Based technique

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

202

In no-index based mostly technique the pointer moves

or scans whole the information that consumes much

time. There ar 2 ways that to try and do the checking.

Job User-Defined functions (UDFs) and mistreatment

LIKE predicate.

Index-Based methodology

In Index-based methodology, it builds auxiliary tables as

index structures to facilitate prefix search. In Index

methodology, it invents 2 tables from given info.

• Inverted-Index Table

• Prefix Table

For example, assuming a user types in a partial query

“sig” on table dblp (Table 1), we issue the following

SQL:

SELECT dblp.* FROM Pdblp, Idblp, dblp WHERE

Pdblp.prefix = “sig” AND Pdblp.ukid ≥ Idblp.kid

AND Pdblp.lkid ≤ Idblp.kid AND Idblp.rid = dblp.rid

Table 1: Database Table - Result

2. Fuzzy Search for Single Keyword.

No-Index-Based Methodology

In no-index primarily based methodology the

pointer moves or scans whole the info that

consumes abundantly time. By occupation User-

Defined perform (UDFs) and it doesn't support

LIKE predicate. We have a tendency to use a UDF

pED (w,s) that takes a keyword w and a string s as 2

parameters and returns a tokenish edit distance

between w and therefore the prefixes.2)

Index-Based method

It also uses two tables

 Inverted-Index Table

 Prefix Table

• Using UDF

It uses UDF to find its similar prefixes from the

prefix table

SELECT T .* FROM PT , IT , T WHERE

pEDTH(w,PT,prefix,T) AND PT .ukid ≥ IT .kid

AND PT .lkid ≤ IT .kid AND IT .rid = T.rid.

• Gram Based Method

It uses q-gram based method to support approximate

search. As this method involve false positive, we have to

use UDF to verify the candidates. So that it is inefficient.

• Neighborhood Generation Based Method

It provides approximate string search by I-deletion

neighborhood value.

D1(pvldb)={vldb,pldb,pvdb,pvlb,pvld}

3. Supporting Multi-keyword Queries.

The previous strategies have the subsequent limitations.

First, they have to seek out similar prefixes of a keyword

from scratch. Second, they'll have to be compelled to

decision UDF persistently. during this Section, we have

a tendency to propose a personality level progressive

methodology to seek out similar prefixes of a keyword

as a user varieties character by character. we have a

tendency to develop effective index structures

victimization auxiliary tables and devise pruning

techniques to realize a high speed. We develop novel

techniques on a way to use auxiliary tables, inbuilt

indexes on key attributes and pruning technique. It

provides data format, deletion, match, insertion,

substitution.

Computing Answers from Scratch

Using the “INTERSECT” operator: it joins the records

for different keywords.

• Using “Full text” indexes(CONTAINS

command):it finds the records matching.

• The obove two methods cannot use

precomputed results and may lead to low

performance.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

203

 Word level Incremental Computation

 We can use previously computed results to answer a

query

 Exact search: it uses prefix table and inverted index

table

 Fuzzy search: here we consider a character by

character incremental method, it allows mismatches.

4. Supporting First-N Query

It retrieves First-N elements from the data base based on

the limit. It has two types:

 Exact First-N query: For exact search, we can use

the “LIMIT N” syntax in databases to return the

first-N results.

 Fuzzy First-N query: it is based on the edit distance;

it will progressively increase the distance threshold

and select the result.

5. Supporting amalgamate search

In this search, we use comma (,) as identifier to engage

multiple search for retrieving more than a data

simultaneously. Hence, this amalgamate search reduces

the number of SQL commands used for mining data

unlike other normal searches.

string[] split = words.Split(new Char[] { ',',' ' },

StringSplitOptions.RemoveEmptyEntries);

SqlDataAdapter adp = new SqlDataAdapter ("select

filename from imge_upload where imgname like '%" +

split[0] + "%' or imgname like '%" + split[1] + "%' or

imgname like '%" + split[2] + "%'", con);

III. RESULTS AND DISCUSSION

From the above analysis, we derive to an conclusion that

Exact search and fuzzy search uses more number of

SQL commands and consumes lots of time to mine the

required data. Whereas on the other hand, amalgamate

search helps us to reduce the effort taken for using more

number of SQL commands and time consumed for

retrieving data one by one. Instead this search helps to

retrieve data simultaneously.

Figure 2: Exact-search performance for answering single-keyword

queries (varying keyword length) [1]

IV. CONCLUSION

We studied the problem of using SQL to support search-

as-you- type in databases. We focused on the challenge

of how to leverage existing DBMS functionalities to

meet the high-performance requirement to achieve an

interactive speed. To support prefix matching, we

proposed solutions that use auxiliary tables as index

structures and SQL queries to support search-as-you-

type. We reduced the time consumed for mining large

amount of data and thus simultaneous search is being.

Here, we use text word as keyword for mining data from

large database. The processing time take for mining data

one after the other by normal searches are overcome by

this search method. It reduces the processing time taken

for entering SQL queries every time and encourages

simultaneous retrieval of data.

V. ACKNOWLEDGMENT

The authors would like to thank Asst Prof. Bhanu Priya

of Dhanalakshmicollege of engineering at Chennai for

her support and constructive comments on preliminary

versions of this paper.

VI. REFERENCES

[1] S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,

“Scalable Ad-Hoc Entity Extraction from Text Collections,”

Proc. VLDB Endowment, vol. 1, no. 1, pp. 945-957, 2008.

[2] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A

System for Keywordth-Based Search over Relational Data

Bases,” Proc. 18 Int’l Conf. Data Eng. (ICDE ’02), pp. 5-16,

2002.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

204

[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-

Similarity Joins,” Proc. 32nd Int’l Conf. Very Large Data Bases

(VLDB ’06 pp. 918-929, 2006.

[4] H. Bast, A. Chitea, F.M. Suchanek, and I. Weber, “ESTER:

Efficient Search on Text, Entities, and Relations,” Proc. 30th

Ann. Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval (SIGIR ’07), pp. 671-678, 2007.

[5] H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc. 29th Ann.

Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval(SIGIR ’06), pp. 364-371, 2006.

[6] H. Bast and I. Weber, “The Complete Search Engine:

Interactive, Efficient, and Towards IR & DB Integration,” Proc.

Conf. Innovative Data Systems Research (CIDR), pp. 88 -95,

2007.

[7] R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all Pairs

Similarity Search,” Proc. 16th Int’l Conf. World Wide Web

(WWW ’07), pp. 131 -140, 2007.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S.Sudarshan, “Keyword Searching and Browsing in DataBases

Using Banks,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), p

p. 431-440, 2002.

[9] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An

Efficient Filter for Approximate Membership Checking,”

Proc. ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’08), pp. 805-818, 2008 .

[10] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya,

and T. Vassilakis, “Data Cleaning in Microsoft SQL Server

2005,” Proc.ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’05),pp. 918-920, 2005.

[11] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust

and Efficient Fuzzy Match for Online Data Cleaning,” Proc.

ACM SIGMOD Int’l Conf. Management of Data (SIGMOD

’03), pp. 313- 324, 2003.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator

for Similarity Joins in Data Cleaning,” Proc. 22nd Int’l Conf.

Data Eng. (ICDE ’06), pp. 5-16, 2006.

[13] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust Identification

of Fuzzy Duplicates,” Proc. 21st Int’l Conf. Data Eng. (ICDE),

pp. 865- 876, 2005.

[14] S. Chaudhuri and R. Kaushik, “Extending Autocompletion to

Tolerate Errors,” Proc. 35th ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’09), pp. 433-439, 2009.

[15] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword Search

on External Memory Data Graphs,” Proc. VLDB

Endowment, vol. 1, no. 1, pp. 1189-1204, 2008.

[16] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin,

“Finding Top-K Min-Cost Connected Trees in Data Bases,”

Proc. IEEE 23rd Int’l Conf. Data Eng. (ICDE ’07), pp. 836-845,

2007.

[17] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.

Muthukrishnan, and D. Srivastava, “Approximate String Joins

in a Data Base (Almost) for Free,” Proc. 27th Int’l Conf. Very

Large Data Bases (VLDB ’01), pp. 491-500, 2001.

[18] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava,

“Fast Indexes and Algorithms for Set Similarity Selection

Queries,” Proc. IEEE 24th Int’l Conf. Data Eng. (ICDE ’08), pp.

267-276, 2008.

[19] M. Hadjieleftheriou, N. Koudas, and D. Srivastava,

“Incremental Maintenance of Length Normalized Indexes for

Approximate String Matching,” Proc. 35th ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD ’09), pp. 429-440, 2009.

[20] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava,

“Hashed Samples: Selectivity Estimators for Set Similarity

Selection Queries,” Proc. VLDB Endowment, vol. 1, no. 1, pp.

201-212, 2008.

